CHAPTER-3
DATA HANDLING
3.1 Data Types in Python:

Python has Two data types —
1. Primitive Data Type (Numbers, String)
2. Collection Data Type (List, Tuple, Set, Dictionary)

Data Types

Collection

Primitive
Data Type

| I

Data Type

Number String

List Tuple Set

int float complex

1. Primitive Data Types:

a. Numbers: Number data types store numeric values.
There are three numeric types in Python:

« Int
« float

« complex

Example:
w=1 # 1nt
y=28 # float

z=1j # complex

‘ Dictionary

e integer : There are two types of integers in python:
» int
» Boolean
» int: int or integer, is a whole number, positive or negative, without decimals.
Example:

x=1
y = 35656222554887711
z =-3255522

» Boolean: It has two values: True and False. True has the value 1 and False has the
value 0.

Example:
>>>bool(0)
False
>>>bool(1)
True
>>>bool(*)
False
>>>bool(-34)
True
>>>bool(34)

True

e float : float or "floating point number" is a number, positive or negative, containing one
or more decimals. Float can also be scientific numbers with an "e" to indicate the power
of 10.

Example:
x=1.10
y=1.0
z=-35.59
a=35e3
b=12E4

¢ =-87.7e100

msn

¢ complex : Complex numbers are written with a ")" as the imaginary part.

Example:

>>>X = 3+5j
>>>y = 2+4)
>>>7=X+Y

>>>print(z)
5+9)
>>>z.real
5.0
>>>z.1mag

9.0

Real and imaginary part of a number can be accessed through the attributes real and imag.

b. String: Sequence of characters represented in the quotation marks.

Python allows for either pairs of single or double quotes. Example: 'hello’ is the same
as "hello" .

Python does not have a character data type, a single character is simply a string with a
length of 1.

The python string store Unicode characters.
Each character in a string has its own index.

String 1s immutable data type means it can never change its value in place.

2. Collection Data Type:

» List

» Tuple

» Set

» Dictionary

3.2 MUTABLE & IMMUTABLE Data Type:
» Mutable Data Type:
These are changeable. In the same memory address, new value can be stored.
Example: List, Set, Dictionary
» Immutable Data Type:
These are unchangeable. In the same memory address new value cannot be stored.

Example: integer, float, Boolean, string and tuple.

3.3 Basic Operators in Python:

i. Arnthmetic Operators

il. Relational Operator

iii. Logical Operators

iv. Bitwise operators

v. Assignment Operators

vi. Other Special Operators
o Identity Operators

o Membership operators

1. Arithmetic Operators: To perform mathematical operations.

OPERATOR NAME SYNTAX vt
T Addition X+y 18
o Subtraction X—y 10
e Multiplication X*y 56
/ Division (float) X/y 3.5
I Division (floor) x /Ny 3
% Modulus X % y 2
e Exponent X**y 38416

Example:

>H>>X= -5
S>>Sx KD
>>> -25

ii. Relational Operators: Relational operators compare the values. It either
returns True or False according to the condition.

OPERATOR NAME SYNTAX | p gﬂi‘iﬂ}
> Greater than X >y False
< Less than X<y True
== Equal to X==y False
= Not equal to x 1=y True
>= Greater than or equal to X >=y False
<= Less than or equal to X <=y True

ii1. Logical operators: Logical operators perform Logical AND, Logical OR and Logical

NOT operations.
OPERATOR DESCRIPTION SYNTAX
and Logical AND: True if both the operands are true x and y
or Logical OR: True if either of the operands is true Xory
not Logical NOT: True if operand is false not x

Examples of Logical Operator:

The and operator: The and operator works in two ways:

a. Relational expressions as operands
b. numbers or strings or lists as operands

a. Relational expressions as operands:

X Y Xand Y
False | False | False
False | True | False

True | False | False

True | True | True

>>> 5>8 and 7>3
False

>>> (4==4) and (7==7)
True

b. numbers or strings or lists as operands:
In an expression X and Y, if first operand has false value, then return first operand X as a
result, otherwise returns Y.

>>>0 and 0 = | e b
0 false |false |X
>>>0 and 6 false |true |X
0 true |false |Y
f}:‘:} a’ and 'n true |true |Y
n
>>>6>9 and ‘¢c’+9>5 # and operator will test the second operand only if the first operand
False # 1s true, otherwise ignores it, even if the second operand is wrong

The or operator: The or operator works in two ways:
a. Relational expressions as operands
b. numbers or strings or lists as operands

a. Relational expressions as operands:

X Y XorY
False | False | False

False | True | True

True | False | True
True | True | True

>>> 5>8 or 7>3

True

>>> (4==4) or (7==T7)
True

b. numbers or strings or lists as operands:
In an expression X or Y, if first operand has true value, then return first operand X as a
result, otherwise returns Y.

X |Y XorY

false |false |Y

false | true Y

true false | X

true true X
>>>0or 0
0
>>>0 or 6
6
>>>‘a’ or ‘n’
135
>>>6<9 or ‘¢’+9>5 # or operator will test the second operand only if the first operand
True # 1s false, otherwise ignores it, even if the second operand is wrong

The not operator:
>>>not 6

False

>>>not ()

True

>>>not -7

False

Chained Comparison Operators:

>>>4<5>3 isequivalent to >>> 4<5 and 5>3
True True

iv. Bitwise operators: Bitwise operators acts on bits and performs bit by bit operation.

OPERATOR DESCRIPTION SYNTAX

& Bitwise AND x&y

| Bitwise OR x|y

~ Bitwise NOT ~X
A Bitwise XOR XAy
>> Bitwise right shift
<< Bitwise left shift X<<
Examples:
Let Output:
a=10 0
14
print(a & b) -11
print(a | b) 14
4 2
rint(~a
print(~a) 40
print(a * b)

print(a >> 2)

print(a << 2)

v. Assignment operators: Assignment operators are used to assign values to the variables.

sl DESCRIPTION SYNTAX
= Assign value of right side of expression to left side operand X=y+z
. Add AND: Add right side operand with left side operand and a+=b

a then assign to left operand a=a+b

Subtract AND: Subtract right operand from left operand and then a-=b a=a-
assign to left operand b

Multiply AND: Multiply right operand with left operand and then | a*=b
assign to left operand a=a*b

ya Divide AND: Divide left operand with right operand and then a/=b
- assign to left operand a=a’b
Modulus AND: Takes modulus using left and right operands and a%=b
0= _) _
assign result to left operand a=a%b
e Divide(floor) AND: Divide left operand with right operand and a//=b
- then assign the value(floor) to left operand a=a//b
. Exponent AND: Calculate exponent(raise power) value using a**=b
operands and assign value to left operand a=a**b
&= Performs Bitwise AND on operands and assign value to left a&=b
; operand a=a&b
= Performs Bitwise OR on operands and assign value to left al=b
B operand a=alb
A Performs Bitwise XOR on operands and assign value to left a’=
- operand a=ab
. Performs Bitwise right shift on operands and assign value to left a>>=b
a operand a=a>>b
Ps Performs Bitwise left shift on operands and assign value to left a <<=b a=
a operand a<<b

vi. Other Special operators: There are some special type of operators like-

a. Identity operators- is and is not are the identity operators both are used to check if
two values are located on the same part of the memory. Two variables that are equal
does not imply that they are identical.

is True if the operands are identical
isnot True if the operands are not identical

Example:

Let

al =3

bl =3

a2 = 'PythonProgramming’
b2 = 'PythonProgramming'
a3 =[1,2,3]

b3 =11,2,3]

print(al is not bl)

print(a2 is b2) # Output is False, since lists are mutable.
print(a3 is b3)

Output:

False

True

False

Example:

>>>gtrl= “Hello”

>>>str2=input(“Enter a String :”)

Enter a String : Hello

>>>strl==str2 # compares values of string

True

>>>strl 18 str2 # checks if two address refer to the same memory address

False

b. Membership operators- in and not in are the membership operators; used to test
whether a value or variable is in a sequence.

in True if value is found in the sequence
not in True if value is not found in the sequence

Example:
Let

x = 'Digital India’

y = {3:"a',4:'d"}
print('D" in x)
print('digital’ not in x)
print('Digital’ not in x)
print(3 in y)

print('b" in y)

Output:
True
True
False
True

False

3.4 Operator Precedence and Associativity:

Operator Precedence: It describes the order in which operations are performed when an

expression is evaluated. Operators with higher precedence perform the operation first.

Operator_Associativity: whenever two or more operators have the same precedence, then

associativity defines the order of operations.

Operator Description Associativity | Precedence
(). 1} Parentheses (grouping) Left to Right
fargs...) Function call Left to Right
x[index:index] Slicing Left to Right
x[index | Subscription Left to Right 1
ok Exponent Right to Left
~X Bitwise not Left to Right
+X, -X Positive, negative Left to Right
* /1, % Product, division, remainder Left to Right
+, — Addition, subtraction Left to Right
<<, >> Shifts left/right Left to Right
& Bitwise AND Left to Right
A Bitwise XOR Left to Right
| Bitwise OR Left to Right
<=, <, >, >= Comparisons Left to Right
=, %=, /=, += Assignment
18, 1S not Identity
in, not in Membership
not Boolean NOT Left to Right
and Boolean AND Left to Right
or Boolean OR Left to Right
lambda Lambda expression Left to Right

